Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves

نویسندگان

  • Alex M. H. Wong
  • George V. Eleftheriades
چکیده

A superoscillation wave is a special superposition of propagating electromagnetic (EM) waves which varies with sub-diffraction resolution inside a fixed region. This special property allows superoscillation waves to carry sub-diffraction details of an object into the far-field, and makes it an attractive candidate technology for super-resolution devices. However, the Shannon limit seemingly requires that superoscillations must exist alongside high-energy sidebands, which can impede its widespread application. In this work we show that, contrary to prior understanding, one can selectively synthesize a portion of a superoscillation wave and thereby remove its high-energy region. Moreover, we show that by removing the high-energy region of a superoscillation wave-based imaging device, one can increase its power efficiency by two orders of magnitude. We describe the concept behind this development, elucidate conditions under which this phenomenon occurs, then report fullwave simulations which demonstrate the successful, power-efficient generation of sub-wavelength focal spots from propagating waves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams.

We present, theoretically and experimentally, diffractionless optical beams displaying arbitrarily-shaped sub-diffraction-limited features known as superoscillations. We devise an analytic method to generate such beams and experimentally demonstrate optical superoscillations propagating without changing their intensity distribution for distances as large as 250 Rayleigh lengths. Finally, we fin...

متن کامل

An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit

Optical microscopy suffers from a fundamental resolution limitation arising from the diffractive nature of light. While current solutions to sub-diffraction optical microscopy involve combinations of near-field, non-linear and fine scanning operations, we hereby propose and demonstrate the optical super-microscope (OSM) - a superoscillation-based linear imaging system with far-field working and...

متن کامل

Far-field optical hyperlens magnifying sub-diffraction-limited objects.

The diffraction limit of light, which is causd by the loss of evanescent waves in the far field that carry high spatial frequency information, limits the resolution of optical lenses to the order of the wavelength of light. We report experimental demonstration of the optical hyperlens for sub-diffraction-limited imaging in the far field. The device magnifies subwavelength objects by transformin...

متن کامل

Seismic Behavior of 2D Semi-Sine Shaped Hills against Vertically Propagating Incident Waves

This paper presents the preliminary results of an extensive parametric study on seismic response of two-dimensional semi-sine shaped hills to vertically propagating incident P- and SV-waves. Clear perspectives of the induced diffraction and amplification patterns are given by investigation of time-domain and frequency-domain responses. It is shown that site geometry, wave characteristics , and ...

متن کامل

Effects of shear and bulk viscosity on head-on collision of localized waves in high density compact stars

Head on collision of localized waves in cold and dense hadronic matter with and without shear and bulk viscosities is investigated. Non-relativistic dynamics of propagating waves is studied using the hydrodynamics description of the system and suitable equation of state. It will be shown that the localized waves are described by solutions of the Burgers equation. Simulations show that the propa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015